

Home

Back to Memories

Back to Thoughts

REMOTE COMPUTING-AN EXPERIMENT AL SYSTEM

Part 1: External Specifications

T. M. Dunn andJ. H. Morrissey

Development Laboratory, Data Systems Division

IBM Corporation

New York,N. Y.

INTRODUCTION

Background

Remote computing has been around as long

as computers themselves.1 More recently, in­
terest has revived in providing remote users
with convenient, economical access to a large

central computer. Considerable attention has

been addressed to its economics2 and practical­
ity.3 Several batch-oriented systems have been
implemented. 4· 5 The techniques of time-shar­

ing6, 7 a la rge 8• 9 • 10 or small 11 system have been

described, as have the attendant advantages of man-

machine interaction12· 13 for symbolic mat

hematics 14 and program testing. 15 Several
input-output devices have been considered, in­

cluding typewriters, 16 displays, 17 and dial-voice

equipment.18

The management, 19 •, 20 21 systems analysis, 22

program testing, 23 and documentation 24 of spe­
cialized real-time systems have also been em­
phasized, but much less attention has been
given to the design of general-purpose op.-line

systems.

This paper reviews some general system re­

quirements and applications criteria leading to
basic design objectives and constraints for

remote-computing systems. An experimental

system using a number of remote terminals

time-sharing a standard computer is then de­

scribed.

System Requirements

There are several requirements that must be

considered when designing a practical remote­

computing system.

1. The remote user does not have access to

experts for programming assistance and

advice. If he uses a problem-oriented

language to express his problem, he re­

quires that the request for and display

of debugging data be consistent with this
programming language.

2. Because his jobs are processed completely

without human intervention, the remote

user obviously cannot communicate his

desires to a machine operator. This leads

to several considerations:

a. The command statements used to regu­
late the system should have a form
and content consistent with the pro­

gramming languages employed.

b. The remote user requires a powerful
command structure; he should have

the ability to state such things as run

time, job status, error procedures, and

disposition of output.

c. The conversational remote user re­

quires access to many of the facilities

available to the machine operator in

the form of console buttons, lights,

and switches. He should receive steady

reassurance that "all is well" by some

413

http://www.tmdunn.com/
http://www.tmdunn.com/memories
http://www.tmdunn.com/thoughts

414 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

form of periodic "blinking" at his

terminal. He also needs the ability to

stop his "machine" at any time and

without loss of data-so that he can

perform such simple functions as

changing some printer paper, placing

more input cards in a reader, or dis­

continuing a job.

3. The remote user is very conscious of

input/output volumes. He must have the
capability to modify decks without com­

plete retransmission, and he should have

the option to selectively inspect and list

output data, as opposed to massively

transmitting entire output files. Also in

this spirit, he desires to keep His various

decks i random storage--quickly and

conveniently available for modffication,
processing, or review.

4. Finally, the remote user should be given

the impression that he is the only user

and that he is in complete control of the

situation. More specifically, in a time­

sharing environment, he should be totally

secure from unwanted, possibly destruc­

tive, interaction by ·others. Ideally, the

computing and response rate of his ter­

minal should not radically fluctuate ac­

cording to the demands of the rest of the

user population; in other words, his

"share" of the central system should per­

form at a relatively uniform processing

rate.

Application Criteria

The following criteria were among those used
in deciding whether commercial or scientific
applications were more amenable to remote
operation:

1. Time devoted to program development vs.
production runs;

2. Importance of job turnaround vs. com-
puter throughput;

3. Available programming languages ;

4. Conversion problems;

5. Reliability objectives;

6. Input/output volumes;

7. Random-storage requirements.

It was concluded that there was more imme­
diate technological significance and lower hard­
ware-software risk in placing initial emphasis

primarily on the scientific applications area.

Design Objectives

The following functional design objectives

were then established :

1. Output data should be as user-oriented

as the source language ;

2. Diagnostic messages and logical analysis
should be definitive enough to allow pro­
gram debugging to take place at the same

level as program construction ;

3. The user should have immediate and
sustained access to the computer;

4. The user should have the ability to exe­

cute, alter, and change values, variables,
and formulas, and to request information
selectively;

5. The system should be at least as easy to
learn as the FORT RAN 25 language;

6. The print volume should be minimized
without loss of quality, on demand of the
user;

7. The system should provide the shortest
possible solution time, ideally no longer
than the time required to construct and

run the solution itself.

Design Constraints

Finally, the following restrictions were im­

posed:

1. Use only an existing standard equipment
configuration;

2. Use, and stay consistent with, an existing
language.

The first constraint serves to keep attention
primarily on fundamental programming prob­

lems and discourages the favorite desire of

many engineers to solve systems problems by

the design of a new feature or the development

of new devices.

The second constraint serves to keep atten­
tion primarily on the processor design and dis­
courages the favorite desire of most program­
mers to solve systems problems by the design

of new languages or the development of new
compilers.

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 415

The Approach

Our approach to accomplishing the objectives

fuses the old technique of interpretive execu­

tion with the relatively new one of time-sharing
a CPU. Thus the cost of sustained access to a

computer by an individual is spread over a wide

base. The internal form suitable for interpre­

tive execution retains all the information con­

tained in the user's original statement of the

problem, thereby making symbolic debugging

possible. Together, these two techniques make

the conversational mode of operation on cur­
rent equipment a practical reality.

Nevertheless, the service this system per­

forms is not a matter of cleverly getting some­

thing for nothing, but a justifiable trade-off.

Execution time is greater, but elapsed solution­

time is significantly smaller. The cost of the

total equipment configuration is comparable to

that of typical large computer systems, but the

cost per terminal is in the small computer range.

In short, this system converts some of the raw

power of the computer into condensed solution­

time and greater creative power for the user.

OPERATIONAL DESCRIPTION

Equivment Configuration

The hardware (see Figure 1.1) consists of:

1. An IBM 704026 with 32K memory;

2. An IBM 130127 disk-file storage, for

permanent retention of user programs;

3. An IBM 732028 drum storage, for the con­
tinual swapping of user programs;

4. A few magnetic tape units, for logging
system transactions and to maintain nor­

mal computer capability;

5. An IBM 7740 communications control
system,29 for the real-time acceptance and

transmission of messages ;

6. A number of IBM 105030 terminals with

keyboard-printer and, optionally, a card

reader and card punch.

The User's Terminal Console

In use, the terminal console (see Figure 1.2)

appears to be a self-sufficient FORTRAN ma­

chine. The user is completely unaware of any

assembly system or the internal organization
of the central computer. The language is con­

sistent with FORTRAN, augmented by a set

of operating, testing, and debugging state­

ments. The mode of communication is called

"conversational," as opposed to "batch," be­

cause the basic unit of input is the individual

statement rather than an entire program, and

every communication by one of the participants
is acknowledged _by the other.

The form in the terminal printer (see Figure

1.3) consists of 126 columns (10 characters/

inch). The first 12 (unnumbered) columns are

rese; ed for control fields, and the remaining

114 (numbered) columns are identical to a

FORTRAN coding form, except for length.

The first five columns of the control-field por­

tion are used to display a line number (101.0

TERMINALS EXCHANGE CPU STORAGE
DEVICES

7740
(16K)

Figure 1.1. Remote-Computing System: Equipment

Configuration

Figure 1.2. IBM 1050 Data Communications System

(with card reader) .

416 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

6 7

Figure 1.3. Remote-Computing-Terminal

Programming Form.

to 999.9), i.e., an identifier automatically gen­

erated by the system to uniquely label each

program statement. The first of the remaining
seven control columns contains a code character

-minus, plus, or equal-denoting the source

of the line-input in Command or Program

mode (see below), or output. The second

through sixth columns of this field contain a

status word which cues or informs the user :

for example, the cue word READY invites the

user to enter his next statement; and ERROR

readily identifies a diagnostic message. (The

seventh column is always blank.)

In the first two (numbered) columns of the

FORTRAN-like portion of the form, "C blank"

is treated as an ordinary comment, while "CV"

causes the statement to be ignored by the sys­

tem and serves as a hard-copy comment not

germane to the program itself. Any character

other than "C" in column 1 is considered a

monitor-control character and the statement is

treated as a normal comment; "CF" is treated

as a comment in FORTRAN, but considered

a normal statement in this system, and thereby

serves to keep a source-program card deck

compatible with other FORTRAN compilers.

General Operating Statements

The general operating statements (see Fig­

ure 1.4) may be used at any time. COMMAND

establishes the Command mode (see below).

EXIT signs the terminal off. Each terminal is

set to standard real and integer formats (E15.8,

I 11) for output of all values not under explicit

FORMAT control. EDIT (- - -) permits the

user to change either or both.

Figure L4. System Language.

Command Mode

When no program is active for a given termi­
nal, that terminal is said to be in the Command

mode; and, conversely, the entering of a COM­

MAND statement will destroy the active image

of the user program. Since no program is ac­

tive, statements cannot be retained, but must

be processed immediately. Consequently, the

user may employ only the general operating
statements, the program-definition statements

(see below), or a limited form of the arithmetic­

assignment statement. This latter provision

allows the terminal to be used as a fast, versa­

tile symbolic desk calculator. In this mode,

the user enters a statement of the form, X==any

expression consisting of constants and built-in

functions, and the system immediately evalu­
ates the expression and prints the result on the

user's terminal.

Program Mode

1. Program-Definition Statements

The program-definition statements (see

Figure 1.4) initiate the Program .mode.

LOAD fetches an existing program from

the user's library, while PROGRAM initi-

Arithmetic

READ

PRINT

PUNCH

WRITE

CC DOMAIN
PROGRAM

OPERATING

ALTER

ASSIGN

RESET

UNLOAD

START

PROGRAM
REFERENCE

NUMBER

LIST

DUMP

INDEX

CHECK

AUDIT

TRACE

TRAP

PROGRAM
DEFINITIONS

LOAD

PROGRAM

SUBROUTINE

FUNCTION

GENERAL
OPERATING

COMMAND

EXIT

EDIT

LINE STATUS 1::==: STATEMENT
10 ZO 25 lO

PROGRAM STATEMENTS

SUBROUTINE IF
FUNCTION DO

EXTERNAL CONTINUE
REAL PAUSE
INTEGER STOP

DIMENSION RETURN
COMMON CALL
EQUIVALENCE ARITHMETIC
FORMAT READ
END PRINT
GOTO PUNCH

GOTO (),I WRITE

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 417

ates the creation of a new main program,

and SUBROUTINE or FUNCTION intro­

duce subprograms.

2. Program Statements

In the Program mode, certain statements,

called program statements (see Figure

1.4), are translated and retained. Conse­

quently, unlike the arithmetic assignment

statement in the Command mode, their
execution is initiated by the user. All FOR­

TRAN statements used by this system

(see Figure 1.4) are program statements.

It is with these that the user may construct

a stored-program solution to his problem;

all other statements are processed imme­

diately and are not retained. As with FOR­

TRAN, there can be only one main pro­
gram-but there can be numerous sub­

programs, with the restriction that no

single subprogram exceed 4000 words of

storage. In this way, although individual

program size is restricted, total program

size may be much larger.

3. Program-Operating Statements

The program-operating statements (see
Figure 1.4) allow the user to execute, alter,

select I/0 components, reset certain initial

conditions, and unload his programs to
library storage, at any time.

START with various operands allows the

user to begin execution from the first or

any other executable statement, or to exe­

cute a segment from one line or statement
number to another, or to resume execution

after manual intervention.

ALTER allows the deletion and insertion

of statements.

SELECT permits specifying the console's

I/0 devices other than the keyboard­

printer.

RESET with various operands initializes

the program for fresh testing runs.

UNLOAD places the user program in li­
brary storage, but does not remove it from

the active status.

SOURCE LANGUAGE DEBUGGING

Debugging information is requested and dis­
played in a form consistent with the source
programming language.3, 1 : 32

Diagnostic Structure

Errors committed by the user may be classi­

fied in two broad categories : syntactic and

semantic.:33

1. Syntactic Errors 34

All syntatic errors are considered the re­

sponsibility of the system and are further

categorized as follows :

Composition. Typographical errors, viola­

tions of specified forms, and misuse of

variable names (e.g., incorrect punctua­

tion, mixed-mode expressions, undeclared

arrays, etc.)

Consistency. Statements which are in

themselves correct, but conflict with other
statements (e.g., conflicting declaratives,

illegal statement ending a DO range, fail­

ure to follow each transfer statement with

a numbered statement, etc.)

Completeness. Programs which have not

been completely specified by the user (e.g.,

transfers to nonexistent statement num­
bers, improper DO nesting, illegal transfer

into the range of a DO loop, etc.) .

Errors of composition and consistency are
detected immediately upon entry of the

offending statement. The user may imme­
diately substitute a correct statement.

Errors of completeness are discovered

when the user signifies that his program

is complete (by entering the END state­
ment).

Some errors (e.g., invalid subscript value,
reference to an undefined variable, arith­
metic spills, etc.) may, of course be de­

tected only during execution. In this case,
after a display of the error condition and
its location, execution is interrupted and

the terminal reverts to READY status.
The user then has the option of either im­

mediately correcting his error or proceed­
ing with the rest of his program.

For all syntactic errors, the diagnostic

message is concise-in that the variable in

error is named, or the column where the

error occurred is specified-and of ten

tutorial in suggesting the procedure for

obtaining correct results.

gi iN I =

m ::i"g

g

m ::im

m ::i:g

m : ;

m130

 110

::i

:g

t

m ::i:g

418 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

2. Semantic Errors

Semantic errors are concerned with the

meaning or intent of the programmer and

are necessarily his responsibility. However,

an extensive set of debugging aids are pro­

vided for manipulating and referencing a

program in ferreting out errors in logic
and analysis.

Value Manipulation

Not too surprisingly, some types of prog.cam

statements are also useful for manipulating the
values of a user program (see Figure 1.4).

Consequently, special characters--called proc­

ess codes-may be inserted into the first two

columns to allow . the use of these statements

as commands, thus causing values to be read

into or out of selected variables. (This is

analogous to the panel-entry/ display functions

performed at a conventional computer console.)

For example, "CC" in columns 1 and 2 of the

FORTRAN-like form (Figure 1.3) has the fol­

lowjng effect on its accompanying statement:

the statement is immediately executed with all

the effects of normal execution, but no new

variable names are created; the statement is
then discarded and does not become a part of

the program. Thus, values may be inserted

TRACE with various operands (Figure 1.6c,
line 144 et seq.) allows the user during later

execution to print out every change of value

for all variables, for all variables within a

specified region, or for specific variables when­

ever they are changed.

TRAP (Figure 1.6c, line 145 et seq.) is a

logical trace of all control transfers, or of all

transfers within a specified region.

NUMBER (Figure l.6e) with various oper­
ands resequences and lists the program.

LIST generates a listing of the entire pro­

gram or any specified portion of it.

INDEX (Figure l.6f, line 231) produces a

complete cross-reference table, ordered on

statement numbers and variable names, show­

ing the line number of every statement in which

each statement number or variable name ap­
pears and whether it was declared, defined, or

referred there; or, INDEX produces a single

such line for a specified variable or statement

number. Any line of the table which is, or

may be, in error is marked with an asterisk.

These features are very useful when making

program modifications.

C8IIIIAND 101 -READY C THIS IS A SAIIPI.E PIHIGRAII

into factors or parameters at any time, thereby
creating completely new testing situations with­ :

1

g
01 :-R:iE:AgD:Y

PRl!GRAII SAIIPI.E

ZPU!T <51>, TABLEC500)

out having to build their presence into the logic
of the program or attempting to anticipate the

104 +READY X : O
105 +READY Y : 1.
106 +READY 2 : 1
106 +ERR0R 04200. STATEl'IENT NllT IN LANGUAGE.

109 +RE:nY 1TY\P8GRAPHICAL ERRIIIRS IIAY BE CIRRECTED IIIIUDIATELY

debugging operations required. ::f ::i:
srSTITUTIN8 A CBRRECT STATEIIENT VIA KEYBIIARD.

101 R = 11m;2 R, ZPUIT

Program Reference Statements

Program reference statements (see Figure
1.4) allow the user to display various vital con­
ditions of his program. These statements are

112 +READY PRINT 102

102 ;:11:T(5X1HX5lUHY>

115 +READY 1 PRINT 103, X , y
116 +READY 103 FBRIIAT(2XF5.2,F8.5)
117 +READY CV ANY STATEIIENT BR SEQUENCE IF STATEIIENTS IIAY BE

CV JmFJED BY IIIIIEDIATE EXECUTIIIIN AFTER ENTRY.

110 =Il01 •
112 :8102 X y
II 4 =ERIHIR TRANSFER PBINT N DBES NIT EXIST
120 +READY START 1

not retained. They are acted upon immedi­
115 =8103 o.

END Ill ;
1

1
.0

1
0

r
0

:
0

ii
0

:

ENCIIIUNTERED DURING EXECUTI0N

ately, then discarded. Through their use, a

complete, dynamic record of both control flow

and data usage may be obtained.

122 +READY X : X + DELX
123 +READY DELY : X• Y*DELX
124 +READY Y : Y + DELY
125 +READY 2 TABLE< I> : X
126 +READY TABLE< I+I) : y
127 +READY IFCX - 1.>1,1,3
128 +READY 3 D0 4 J : 1, I, 2

:129 :+R:EADYi
X : TABLE c J>

ARIT r«TABLECJ+l>-TASU:<2»/(TABLE< I+l>-TABLE<2»•50 >

DUMP (Figure 1.6b, line 143) produces an
alphabetically ordered listing of program iden­

+ERR0R IIIXED DECBIIP0SITI0N ERRBRCS) • g STATEMENTS IN ERRBR AT TIIIE 0F ENTRY ARE NBT ACCEPTED.

tifiers with their current values. Array sub­ m ::i:g

SUBSTITUTI0N l'IAY BE IIADE VITHl!UT RE-ENTERING PRllGRAII

0; m A L ; 1 >-TABLEC2l >IC TABLE< I+I l-T SLE<2> >•50. >

scripts are stepped automatically, contiguous

zero-valued array elements are omitted, and

empty elements (i.e., those never receiving a

v:ilue) are flagged.

135 +READY PRINT 104, X , ZPL9T
136 +READY 104 FIIIRIIATCF5.2,5! At>

4 ; Tw : ZPLllT(K+Il

139 +READY END

Figure 1.6a. Sample Program: Creation and TEsting.

*

*

*

*

f

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 419

144 +READY
145 +READY
146 +READY

ll0 =1101

TRACE K
TRAP lOl./138.
START 0

140 +READY
110 =1101 *
112 :111102
l 15 :111103
115 =11103
115 =111103
115 =111103
ll5 =111103
115 =111103
135 =1104
135 =1104
135 =1104
135 ·=1104
135 =111104
135 =111104
135 =IH04
137 =ERR9R

START 0

X y

o. 1.00000
0.20 1.04000
0.40 1.12320
0.60 1.25798
0.80 l.45926
1.00 1. 75111

o.
0.20 *
0.40 *
0.60 *
0.80 *
1.00
1.20
VALUE IF SUBSCRIPT IS ZERIII, NEGATIVE, IIIR EXCEEDS DIIIENSIIIIN

112 :11102 X Y
l 14 =TRAP TRANSFER Tl 2 C 125 >
127 :TRAP TRANSFER TII l C ll5 >
ll5 =11103 o. 1.00000
127 :TRAP TRANSFER TII I C ll5 >
ll5 =11103 0.20 l.04000
127 =TRAP TRANSFER Tl l < 115)
ll5 =11103 0.40 1.12320
127 =TRAP TRANSFER TII I C 115)
115 =8103 0.60 1.25798
127 =TRAP TRANSFER Te l C ll5)
ll5 =1103 0.80 1.45926
127 =TRAP TRANSFER Tl I Cll5 >
115 =1103 1.00 lo75ll I
127 =TRAP TRANSFER TIii 3 <128 >
133 :TRAC£ I(: I
135 =111104 o. *
133 :TRACE I(:

135 =111104 0.20 *
133 :TRACE K=
135 =9104 0.40

141 +READY DUIIP
CHAR=•0. l 419158I E-08
DELX= 0.20000000E·OO
DELY: 0.42026726E-OO

133 :TRACE K=
135 =111104 0.60
133 :TRACE K=
135 =9104 0.80
133 :TRACE K=

12

* 20

33

142 +READY EDITCf'S.5>
l 43 +READY DUIIP

ERR8R ILLEGAL CHARACTER IN TEXT
DUIIP
CHAR=•0.00000
DELX= 0.20000
DELY= O. 42027
I= 13
J: 13
I(: 51
X: l.20000
Y= 2.17138
TA8LECI>= O.

135 =111104 1.00
133 :TRACE- K: 51
135 =111104 1.20 *
137 :ERR9R VALUE lilF SUBSCRIPT IS ZERIII, NEGATIVE, 9R EXCEEDS DIIIENSililN

Figure 1.6c. Sample Program: Creation and Testing

(continued).

TA8LEC2>= 1.00000
TABLEC3): 0.20000
TABl.£(4): 1.04000
TA8LEC5>: 0.40000
TABLEC6): lo 12320
TABLE(7>: 0.60000
TABLEC8): 1.25798
TABLEC9>: 0.80000
TABLECIO): 1.45926
TABL£Cll>= 1.00000
TABL£C12): 1. 75111
TABLEC13): 1.20000
TABLEC14>: 2. 17138
TABLEC500): o.

: ;;.:;;;;::;. ;;;=
DUIIP ALWAYS IIAY BE INTERRUPTED.

147 +READY
137 +ALTER
137!+Al.TER
1IOl+ALTER
1102+ALTER
1102+£RRlilR
148 +READY
137 +ALTER
137l+ALTER
149 +READY
150 +READY
151 +READY
110 :IIOI *
112 :0102

;: =i
115 =111103

ALTER 137.1137.
ZPUTC K> : BLANK
ALTER 110.
BLANK : ZPUTC 1 >
ALTER *

DIii 128.0 REFERENCES UNDEFINED LABEL
ALTER 137.1137.

4 ZPL0TC K> : BLANK
ALTER•

TRACE• K
TRAP* 101./138.

START 0

X y

0.60 i.25798
0.80 1.45926
1.00 1.75111

135 =0104
135 :111104
135 :0104
135 :0104
135 :0104
135 :0104
135 =0104
138 :S77
152 +READY

0. *
0.20
0.40
0.60

"b.so
1.00
1.20

Figure 1.6d. Sample Program: Creation and Testing

(continued).

Figure 1.6b. Sample Program: Creation and Te_sting

(continued).

CHECK (Figure l.6f, line 232) is an abbre­

viated INDEX in that only erroneous and

suspicious items are displayed (i.e., only those

INDEX lines marked with an asterisk).

AUDIT generates cross-reference informa­

tion based on the execution of the program,

showing which sections were never executed

and which variables were never set, or set but

never used. This concise, post-mortem sum­

mary of incomplete control flow and data usage

201 :
20 :
203 :
204 :
205 :
20'5 :
207 :
20!! :
209 :
210 :
21 I :
212 :
213 :
214 :
215 :
216 :
217 :
218 :
219 :
220 :
221 :
222 :
223 :
224 :
225 :
226 :
227 :
228 :
229 :
230 :

NUIIBER 201.

er PR21GRA!I SA!IPLE
DIMENS1"N ZPL0TC5I >, TABL£C500>
OELX:.2
X:O
Y:J.
I=l
READ I 01, CHAR, ZPL0T
BLANK: ZPLIIITC I)

101 F0RPIATC52AJ)
PRINT 102

102 F0RfllATC5XI HX5Xl HY>
G0 T0 2

I PRINT 103, X, y
103 F0R!IA TC2 XF50 2, FS. 5>

I=I+2
X=X+DELX
DELY:X•Y•DELX
Y:Y+DELY

2 TABLE< I>:X
TABLE<I+l):y
1rcx-1. >1,1,3

3 D0 4 J:I,1,2
X:TABLECJ>

0; +I >-TABLEc2 » / C TABLE< I+ I > -T ABLEC2> > *50.

PRINT l04,K,ZPL0T
104 F21R!IATC F5. 2, 5 I Al>

4 ZPL0TC K>=BLANK
SUP 77
END

is a powerful aid in ensuring the thoroughness

of program debugging.
Figure l.6e. Sample Program: Creation and Testing

(continued).

*

ZPLITC I >=-6.09524 115 =111103 0. , 1.00000
ZPLITC2)- 6.09524 115 :0103 0.20 1.04000
ZPLIIITC3>=•6.09524 115 =111103 0.40 1.12320

420 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1964

231 +READY INDEX

I +213. -221.
2 +219. -212.
3 +222. -221.
4 +228. -222.

3. As in most compilers, the sequence of

translated code for arithmetic expressions

may differ from that produced by other
5 +207.

101 +209.

-201. compilers and slight discrepancies due to
102 +211. -210.
103 +214. -213.
104 +227. -226.

BLANK +208. -228.
CHAR +207. -225.
DELX +203. -216. -217.
DELY +217. -218.
I +206. +215. -21,. -219. -220.

-222. -224.

J +222. -223. -224.
K +224. -225. -228.

variations in truncations JIIay occur.

4. Some minor differences in the internal
representation of program constants,

caused by different conversion routines,
.SAl'IPLE 201 •

TABLE 202. +219. +220. -223. -224. may also create slight differences in nu­

232 +READY

X +204. -213. +216. -216. -211.
-219. ·221. +223. -226.
+205. -213. -211. +218. -218.
-220.

ZPL0T 202. +207. -208. +225. -226.
+228.

CHECK

* 5 +207.

merical results.

5. Individual source programs are limited
to approximately 400 statements. This

= •SAl'IPLE 201.
33 +READY

Figure 1.6f. Sample Program: Creation ap.d Testing

(continued).

Built-in Subroutines

Since only program statements are retained,

many excellent testing and debugging com­

mands would not be available under program
control, but would require the presence of the

user at the moment of execution. To overcome

this limitation, most of these statements have

been designated as "built-in subroutines," a

concept completely analogous to FORTRAN

built-in functions. These statements, without

change in their form, may be made the operand

of a subroutine CALL statement. In this way,
all the console testing and debugging f eatu res

which may be of value are also available under

program control.

COMPATIBILITY

Studious regard has been paid to maintaining

consistency with other FORTRAN compilers.

Programs written in the system language are

acceptable without change to conventional

FORTRAN IV processors. FORTRAN IV pro­

grams are acceptable to the experimental sys­

tem with the following limitations:

1. The program must be written with state­

ments from the system subset.

2. A restriction of all one-pass translators
is that the source-deck ordering must have

the declarative statements precede the
imperative statements. Of course COM­
MENT and FORMAT statements may ap­

pear anywhere.

limit may often be circumvented by seg­

menting oversized programs into smaller

subprograms.

6. Other Factors :

a. No arithmetic function statements;

b. No logical, complex, or double-preci­

sion variables;

c. Number of elements (i.e., constants,

variables, arrays, and functions) must

be less than 190 ;

d. Only one continuation card;

e. No magnetic tape 1/0;

f. Some minor restrictions on equated

variables;

g. Constants-

Reals: 8 digits, with magnitude within

range 10- 32 to 1032 or with zero mag­

nitude,

Integers: 10 digits;

h. Array names must appear in a DI­

MENSION statement prior to any

other appearance;

i. Maximum 1/0 record size is 133 char­

acters;

j. Array names used as arguments must

be declared in COMMON.

EXAMPLES

A program exhibiting many of the features

available in this system is depicted in Figures

1.5 and 1.6. Figure 1.5a shows the final, cor­

rect version of the program. Figure 1.5b shows

the correct output produced as a result of execu­

tion (see START statement, Figure 1.5a, line

128).

X : 0

<:> l'YlOc,c,,:,n-o ic, Yn•1ntorl Y\Alnt1Y1n" Ant tl,,;:it tho nn

REMOTE COMPUTING-AN EXPERIMENTAL SYSTEM 421

IOI -READY C
IOI -READY C -
IOI -READY
102 -IREADY
t03 -!READY
104 -IREADY
105 -IREADY
106 -IREADY
!C,7 il!EADY 101
!08 -IREADY

CIIIIIIAND
THIS IS A SAIIPLE PRIIGRAII.

PRBGRAII SAIIPLE
DIIIENSIIIN ZPLIIT (52>, TABLE (500)

y = ,.
I : I
READ IO 1, DELX ,CHAR ,ZPLIIT

FIIRIIAT Cf' 7.4,53A I)
PRINT 102

At lines 119 and 120, the user initiates inter­

mediate execution and verifies his FORMAT

statements before going further. In this man­

ner, any statement, sequence of statements, DO

loop, etc., may be debugged as the program is

entered ; or sections may be tested independ­
109 -IREADY
I 10 -IREADY
111 -+READY
112 -!READY
I 13 il!EADY
114 -+READY
115 -+READY
116 -+READY
117 il!EADY
118 -+READY
ll9 -+READY
120 -tREAOY
121 -+READY
122 il!EADY
t23 il!EADY
124 -+READY
I -!READY
126 -!READY
127 -!READY
128 -!READY

102 FIIRIIATC51CIHX7XIHY)
2 TABLE CJ> : X

TABLE CI +I) : Y
I PRINT 103, X, Y

103 FIIRIIAT<2KF7.4,F8.5)
IFCX•t.>5,3,3

51 :J +2
X:X+DELX
DELY =X •Y •DELX
y : Y + DELY
GBTO 2

3D04J=t,!.2
X : TABLE<J)
K :t.+CCTABLE CJ+D•TABLE C2)>1CTABLE CJ +D•TABLE (2) >•50.>
ZPL8T CK) : CHAR
PRINT 101, X, ZPLIIT

4 ZPL8T CK> =ZPLIIT CK+I>
STflP 11
END
START 0

ently of the remainder of the program.

Execution of the entire program, line 140,
discloses a number of bugs. Inspection of line

137 discloses the use of K as subscript. K could

be printed selectively, but the user decides to

dump all variables (see line 141). After DUMP
starts, he interrupts it in order to change the

format of the display and then dumps again

(see line 143). In the event that the dump
Figure 1.5a. Sample Program: Final Form. showing K == 51 is not a sufficient clue to the

error, the user establishes a TRACE on Kand a

106 =I 101
108 ::e102
112 ::9103
112 ::e 103
ll2 :8103
112 ::e 103
112 ::e 103
112 ::e 103
112 ::e 103
112 :8103
I 12 :8103
112 :8103
112 :8103
112 :8103
I 12 :8103
112 :8103
112 :8103
112 :8103
112 :8103
124 :8101
124 ::e101
124 :8101
124 :9101
124 :8101
i2-oi :iliOi
124 :8 IOI
124 :8101
124 :8 101
124 :8 IOI
124 :8101
12-4 :8101
124 :8101
124 :8101
124 =e101
124 :8 IOI
124 =e101
126 ::S77
129 -!READY

00.0625•

X y

o. 1.00000
0.0625 t.00391
0.1250 t.01175

o.1875 t.02361
0.2500 t.03960
0.3125 t.05990
0.3750 I .08475
0.4375 t. 11441
0.5000 I. 14923
o.5625 ,. 18963
0.6250 t.23610
0.6875 t.28922

o.7500 t .34965
0.8125 t.41819
0.8750 1.4957-4

o.9375 t.58339
o.

I

.00
•
00 t.68235

0.0625•

o., a.
o. 1875 •
0.2500 •
o.3i.25 •
0.3750 •
0.4375 •
0.5000 •
o.5625
0.6250
0.6875
0.7500
0.8125
0.8750
0.9375

1.0000

UNL8AD

TRAP on the entire program, and starts again

(see lines 144-146). This produces, together

with his programmed output lines, a dynamic

listing of control and data flow, before termi­

nating with the same error message.

At line 147, the statements in error are cor­

rected, but a statement number is inadvertently

omitted. On terminating the ALTER status,

U J...1..1.V ..:>UfS\.., .l...:J p.1. .l..1.-l\.l'--'\.A _tJ"v.L.l..1.V.1..1..1./:, '-'t...c.U V.L.1.C.4,,V V..L.I.'-' .&.J "'-/

atline 128 references a nonexistent label. This
error i::; cu1Tected ttud a. .::;ub.::;ey_Ueut 1 u1111i11g vf

the program, line 151, shows that the subscript
is now behaving properly.

There are other changes to be made, however.
The NUMBER at line 152 yields a clean, re­

numbered listing of the current state of the
program. Line 231 shows a complete INDEX,

Figure 1.5b. Sample Program: Final Execution.

Figure 1.6 depicts a preliminary attempt to

create and test this program. (All references

that follow are to Figure 1.6.)

Input to the system may be from the key­

board or card reader at the remote terminals,

or through input equipment located at the cen­

tral computer. At line 106 a mispunched card

causes printing of an error message. The user

now suspends automatic input, substitutes a

correct statement via keyboard, and then re­

sumes automatic input. Of course, the substitu­

tion could have been made later by means of an

ALTER (see below).

and line 232, the results of a CHECK statement.
All of these will be helpful in reorganizing and

documenting the final, correct version of the
program.

Figure 1.7 shows the immediate evaluation

of arithmetic expressions, consisting solely of

constants and FORTRAN functions, in the

Command mode.

EXPERIENCE

The system, from its most primitive form to

the present, has been running for more than a

year. A formal tryout of the system was run

in November 1963 with- 10 students attending

IBM's Systems Research Institute.

=

= s=

422 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, Hl64

CflllllAND

101 -READY Y=2.5065•IO... c10.+1.>>1EXPrc-10.>
101: Y: 0.11379485[08
JOI -READY HENRY=2.E-9*50.•a.eer (2.•50./10. >-1.0+10.150.
101 -ERRIIR 04117. PARENTHESES N8T IN BALANCE.
101 -READY HENRY :2.E •9*50.•a.llG, cz.•50.110. >-1.+10./50. >
IOI : HENRY: 0.1502585<£-06
IOI -READY R88T I :(•25.-ISQRTFC25.••Z•4.• I .•2.))/C2.•l>
101 -ERRflR ARITIIIIETIC DECIJIIP8SITI8N ERRfJR CS>
101 -£RR8R IIIXED 118DE
101 -READY R88T I =<•25.-ISQRTF (25.**2•4.U .•z.))/C2.•I • >
101 : R88T t:-0.80257654:•0I
IOI -READY K£NRY=2.E·9*50.•Q.8Gr (2.•50./10. l-1.0+10./50. >
101 : HENRY: 0.!502585<E·06
101 -READY VAL= 1.JCl!ISF (50. HUGF CABSF" CSINF" (50.12. >JCf!SF <50.12. » >
101 : VAL=•0.9771499EE 00
101 -READY AREA=2.•10.•5.*5INFCJ.l416/lO.>
101 : AREA: 0.30901768£ 02
101 -READY ARC=2 • .SQRTl"C4.••2+1.JJJ3$2.••2>
101 : ARC: 0.92J7575JE 01
101 -READY ARC:2.•<4.•4.+4.•2.•Z./J.>••0.5
101: ARC= 0.92376041[01
101 -READY S:<8SF(40.>••<20.+l.)/20.II.>
101 -£RR9R 04117. PARENTHESES Nl!IT IN BALANCE.
101 -READY G:0.5>11..fGF«l.-lSINFC45.»IC1.-SINFC45.»>
JOI : 8: 0.12'94177£ 01
101 -READY S ::SINr < 45. >
101 o.s5o90J5:!E oo
101 -READY G:0.5>11..f!GF«l.+.7071l/Cl.-.7071»
101 : G: 0.88135999£ 00
101 -READY E=20.*ATANFC20.l4.l•4.l2.>ll..8GrC4.••2+20.**2l

101 : E: o.15406644: 02
101 -READY Q:(2.ICJ.1416*10. »••0.5*5INf' < 10. >
101 o=-o.1J126J5'l[•OO
101 -READY Q:0.7978/SQRTf'Cl0.>"6INf'Cl0.>
101 : Q:•0. ll7249ll!t•OO
101 -READY C

101 -READY

Figure 1.7. Examples of Command Mode Operation.

USER

BACKGROUND
SKILLS

SRI EXPE RIMENT

7090 FORTRAN REMOTE COMPUTING

FORTRAN TYPING NO. RUIIS
NO. PROGRAMS

DEBUGGED

NO. HOURS NO. PROGRAMS
DEBUGGED TRNG DBUG

A

B

C

D

E

F

G

H

I

HIGH

HIGH

HIGH

MEDIUM

MEDIUM

LOW

LOW

LOW

LOW

LOW

LOW

NONE

HIGH

HIGH

MEDIUM

NONE

NONE

NONE

NONE

5

NONE

12

6

NONE

10

4

3

NONE

J

NONE

5
'2

NONE

3

2

I

2

213

2

I

3

2

2

2

11/Z

2

11/:S

3

6

3

6

4

I

fl/2

3

2

3

4

2

5

2

2

3

TOTALS 40 16 16 28 26

Figure 1.8. Results of SRI Tryout.

The students were divided into two groups,

I and II, and given the same set of problems

to be solved in FORTRAN. Group I was told

to do the odd-numbered problems on the IBM

7090 and the even-numbered ones on the

remote-computing terminals. Group II re­

versed this polarity.

The chart in Figure 1.8 shows the answers

given by nine of the participants (the tenth

failed to return his questionnaire) to the fol­

lowing questions :

1. "How much FORTRAN experience have

you had?" (Answer was evaluated HI,

LO, MED, NONE.)

2. "Have you had any typing experience?"

(Answer was evaluated HI, LO, MED,

NONE.)

3. "How many times did each problem go to

the 7090 before you obtained correct re­

sults?" (Number of runs were summed.)

4. "How many problems did you debug on

the 7090 ?"

5a. "Approximately how many hours of

training did you have on the terminal

console?"

5b. "How many debugging hours?"

6. "How many problems did you debug on

the terminal console?"

Because this experiment was of limited scope,

the experience reported must be taken cau­

tiously. There are many variables which affect

the usefulness and economy of this approach,

and continuing field trials will yield more pre­

cise information.

SUMMARY

The time-shared use of a computer provides

a convenient, economical service to numerous

remote users. This access is enhanced by use of

conversational, source-language debugging tech­

niques. Although the experimental system is

oriented to the IBM 1050 terminal, the FOR­

TRAN language, and scientific applications, the

techniques described are useful with other ter­

minal devices, programming languages, and

application areas. Preliminary opt:rating ex­

perience indicates that systems such as the one

described have considerable potential in en­

abling personnel less skilled in the program­

ming art to rapidly obtain solutions to their

problems.

ACKNOWLEDGEMENTS

Among the several people making significant

contributions to the system, the authors wish to

specifically acknowledge the work of Miss

Geneva Butts, who implemented a major part

of the source-language debugging features, and

Mr. Murray Kizner, who implemented the

translator routines for many Command fea­

tures.

REFERENCES

1. E.G. ANDREWS, "Telephone Switching and

the Early Bell Lab. Computers," Bell Sys­

tem Technical Journal, March 1963.

TRM H'nl'"n"\ l\Tnl"V\ho:r M'9Q Q0'7A

REMOTE COMPUTING-AN EX PE RIM ENT AL SYSTEM 423

2. A RAND Symposium, "Economics of Re­

mote Computing," Datamation, September

1961, October 1961, November 1961.

3. R. L. PATRICK, "So You Want To Go On

Line," Datamation, October 1963.

4. D. B. BREEDON and P. A. ZAPHYR, "Pros
and Cons of Remote Computing," Control

Engineering, January 1963.

5. G. L. BALDWIN and N. E. SNOW, "Remote

Operation of a Computer by a High Speed

Data Link," Proc. F JGC, December 1962.

6. C. STRACHEY, "Time Sharing in Large,

Fast Computers," Proceedings of the Inter­

national Conference on Information Proc­

essing-UNESCO, June 1959.

7. J. McCARTHY, "Time Sharing Computer

Systems," Management and the Computer

of the Future, Chapter 6, John Wiley &

Sons, Inc., 1962.

8. F. J. CORBATO, "An Experimental Time

Sharing System," Proc. SJCC, May 1962.

9. F. J. CORBATO, et al., "The Compatible Time

Sharing System-A Programmer's Guide,"
The M.I.T. Press, May 1963.

10. W. V. CROWLEY, "Why Stretch?" Proc.

ACM National Con/ erence, September

1962.

11. S. BOILEN, E. FREDKIN, J.C. R. LICKLIDER,
and J. McCARTHY, "A Time Sharing De­
bugging System for a Small Computer,"
Proc. SJCC, May 1963.

12. W. CLARK and J. C. R. LICKLIDER, "On­
Line Man-Computer Communication,"

P1·oc. SJCC, May 1962.

13. J. C. R. LICKLIDER, "Man-Computer Sym­

biosis," IRE Transactions on Human Fac­

tors in Electronics, March 1960.

14. L. C. CLAPP and R. Y. KAIN, "A Computer
Aid for Symbolic Mathematics," Proc.

FJCC, November 1963.

15. H. TEAGER and J. McCARTHY, "Time­

Shared Program Testing," Proc. ACM Na­

tional Meeting, September 1959.

16. C. N. MOOERS, "The Reactive Typewriter,"

ACM Communications, January 1963.

17. G. J. CULLEN and R. W. HUFF, "S lution of

Non-Linear Integral Equations Using On­

Line Computer Control," Proc. WJCC,

April 1962.

18. T. MARILL, D. EDWARDS, and w. FEURZEIG,

"DATA-DIAL: Two-Way Communication

with Computers from Ordinary Dial Tele­

phones," ACM Communications, October

1963.

19. R. HEAD, "The Programming Gap in Real

Time Systems," Datamation, February

1963.

20. W. A. HOSIER, "Pitfalls and Safeguards in

Real Time Systems," Datamation, April

1962 and May 1962.

21. T. A. HALDIMAN, "Management Techniques
for Real Time Computer Programming,"

ACM Journal, July 1962.

22. W. FRANK, W. GARDNER, and G. STOCK,

Programming On-Line Systems," Datama­

tion, May 1963 and June 1963.

23. D. ISRAEL, "Simulation Techniques for the

Test and Evalution of Real Time Compiler
Programs," ACM Journal, 1963.

24. R. HEAD, "Real Time Programming Speci­

fications," ACM Communications, July

1963.

25. FORTRAN General Information Manual,
.... ...,......._ .a. v-.&. .1..1..1, u..1..a..1.JJV.1. .1..· "-'v-uv 1-x.

26. IBM 7040/7044 General Information Man­

ual, IBM Form Number D22-6645.

27. IBM 1301 Disk Storage, IBM Form Num­

ber D22-6576.

28. IBM 7320 Drum Storage, IBM Form Num­

ber G22-6717.

29. IBM 7740 Communications Control Sys­
tem, IBM Form Number A22-6753.

30. IBM 1050 Data Communications System,
IBM Form Number A24-3020.

31. H. FERGUSON and E. BERNER, "Debugging

Systems at the Source Language Level,"

ACM Communications, August 1963.

32. M. WILKERSON, "The JOVIAL Checker,"

Proc. W JGC, April 1961.

33. H. SCHWARZ, "An Introduction to AL­

GOL," ACM Communications, February
1963.

34. G. M. WEINBERG and G. L. GRESSETT, "An

Experiment in Automatic Verification of

Programs," ACM Communications, Octo­

ber 1963.

